
Adhesion between a rigid cylindrical particle and a soft fluid membrane tube

Jeff Z. Y. Chen and Sergey Mkrtchyan
Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
�Received 11 January 2010; revised manuscript received 24 February 2010; published 7 April 2010�

We investigate the structure of a tubular membrane adhering to a rigid cylindrical particle, in various radius
ratios. Through a theoretical and numerical analysis of a free-energy model that uses Helfrich energy for the
description of the membrane, we show that three distinct phases exist, depending on the ratio between radii of
the membrane tube and the rigid cylinder and an adsorption parameter describing the attraction between the
cylinder and tube surface. The adhesion transition from the desorbed to weakly adhered states is identified as
a second-order phase transition; the wrapping transition from the weakly adhered to strongly adhered states is
identified as a first-order phase transition.
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I. INTRODUCTION

Recent theoretical interests in the behavior of macromol-
ecules interacting with fluid membrane surfaces can be at-
tributed to the importance of these systems in both funda-
mental research and practical soft-matter and biological
systems. Profound structural properties have been discovered
in the context of simple coarse-grained theoretical models
within a few relevant physical parameters, in basic types
such as the excluded-volume repulsion and short-ranged sur-
face attraction; these studies have provided understanding of
a more complex nature of real soft-matter and biological sys-
tems �1–25�. For example, for modeling purposes, a rigid
particle of a size competing with a typical length scale in a
fluid membrane and attracted to the surface of the membrane
by a short-ranged attraction has been used to represent col-
loids, nanoparticles, or even bacteria. Adhesion �or adsorp-
tion� of a single spherical or cylindrical particle to an
originally flat membrane was theoretically shown to pro-
duce possible stages of phase transitions, ending at a
deep engulfing of the membrane sheet about the particle
�11,14,18,19,26� when the attraction is significant.

In this paper, we theoretically study the structure of a
rigid cylindrical particle of radius R attracted to a freely
standing soft cylindrical tube originally of radius r0, with
codirected axes �see Fig. 1�. In a cross-section view, this
problem is reduced to two dimensions, where we consider
the modeling of a rigid circle interacting with a deformable
closed curve. The study of this model system serves the pur-
pose of providing a theoretical prediction for the structural
properties of systems related to tubular membranes. In addi-
tion to a variety of closed shapes normally seen in vesicles, a
lipid-bilayer membrane can also be stabilized in a long tubu-
lar shape by using a number of experimental techniques
�27–32�. Recent experimental and theoretical efforts have
been made to examine the structural and transport properties
in systems particularly involving tubular membranes
�21,23,25,33–38�. The considered system can be simplified
into two-dimensional. This can be compared with a number
of related systems in two and three dimensions, where
progress has been made in understanding the interaction be-
tween a vesicle and a flat or curved substrate �1,2,39–42�.

To model the fluid membrane we use the Helfrich model
that contains two parameters: the bending rigidity � and sur-

face tension � �43,44�. Following Seifert and Lipowsky �1�,
we have further introduced a phenomenological parameter w
which describes the adsorption energy per unit area between
the contact surfaces of the cylinder and soft tube. In follow-
ing sections, we show that of the four parameters, �, �, w,
and R, only two dimensionless combinations are relevant in
the consideration of the structure of the current system.

We take the view that the membrane tube is connected to
a remote reservoir that maintains a constant tension � in the
system, or equivalently, the considered membrane tube is
only a segment of a much longer system where the radius is
controlled at a constant value remotely. It is not uncommon
in actual experimental setups where the extraction of a tubu-
lar membrane requires a much larger vesicle as the “reser-
voir” �27–32�. We consider that a cylinder of height much
shorter than the total length of the membrane tube is ad-
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FIG. 1. �Color online� �a� Illustration of the adhesion of a rigid
cylindrical particle �red� of radius R to the exterior surface of a soft
membrane tube that is originally a right circular cylinder �blue� of
radius r0. The coordinate system used for theoretical calculation is
displayed in �b� where the cross-section view perpendicular to the
cylinder axis is shown.
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sorbed to the surface of the membrane �Fig. 1�. Within this
section of the system, the area inside and the perimeter about
the closed membrane shape curve in Fig. 1�b� are not subject
to any constraint. Focusing on this section of the membrane
tube alone, we can assume that � is fixed and the tube has
open ends where “membrane material” can be fed or taken
away, while the shape undergoes a radial change.

This can be contrasted with a vesicle adhesion problem in
three dimensions �1�, where the total volume inside the
vesicle and the total surface area around the vesicle are nor-
mally kept at constant values in a theoretical consideration
�45�. In addition to the three-dimensional version, Seifert
studied the adhesion problem of vesicles to a flat surface in
two dimensions, using a constant “volume” �actually en-
closed area in two dimensions� constraint, through a pressure
constraint term in the free energy as a two-dimensional ver-
sion of the three-dimensional problem �2�. To describe an
open tubular system connected to a reservoir our current
work does not incorporate such a constraint. The inclusion of
the constraint in our work is mathematically possible but
would describe a different physical setting.

II. FREE-ENERGY MODEL FOR THE FREE PORTION OF
THE MEMBRANE

We first define a coordinate system used in this work. We
assume the existence of a reflection symmetry of the con-
figuration about a mirror plane, represented by the dash-dot
line in Fig. 1�b�, which goes through the axis of the rigid
cylinder and the original axis of the membrane tube. In a
cross section perpendicular to the cylinder axis, only half of
the nonadhered portion of the tubular membrane is needed in
our calculation. In the sketch, this half portion is represented
by a �blue� curve with a path variable s going from s=0 to
s=S.

The shape of the nonadhered portion of the membrane can
be specified in terms of polar coordinates �r�s� ,��s��. At any
given s, these two variables can also be related to ��s�, de-
fined as the angle between the shape line and the coordinate
circle of radius r�s� �see Fig. 1�b��, by constraints,

dr

ds
= sin ��s� , �1�

and

r�s�
d�

ds
= cos ��s� . �2�

The use of ��s� allows us to write the square bending curva-
ture of the membrane at s as �d� /ds−d� /ds�2. Taking Eq.
�2�, we can express the Helfrich free energy for a deformed
membrane tube of length L,

F = 2L�
0

S

ds��

2
�d�

ds
−

cos ��s�
r�s� �2

+ �	 , �3�

where L is the length of the rigid cylinder, � the bending
energy and � surface tension of the membrane surface. In
this paper we are interested in a long adhering cylinder

�L /R�1� hence ignore the end effects, which amount to a
contribution much smaller than the above. A prefactor of 2
has been included to account for two halves of the nonadher-
ing membrane.

We take a moment to examine a trivial solution that can
be obtained from the minimization of the free energy in Eq.
�3�—the solution of a circle for a free tubular membrane.
Letting ��s�=0 implies r�s�=r0=S /� from Eq. �1� and
��s�=�s /S from Eq. �2�. Inserting these solutions to the free
energy in Eq. �3� we obtain

F0

2�L
=

�2

2S
+

�S

�
. �4�

Minimization of Eq. �4� with respect to S yields

r0
2 = �S0/��2 = �/�2�� , �5�

which is the square radius of the tubular membrane, before
adhesion of the membrane to the rigid cylinder.

Using r0 as the basic length scale, we can define dimen-
sionless, reduced length parameters,

s̃ 
 s/r0, �6�

r̃ 
 r/r0, �7�

together with a reduced free energy per unit length,

F̃ 

Fr0

2�L
. �8�

The reduced free energy of the nonadhered portion of the
membrane can then be written as

F̃m =
1

2
�

0

S̃
ds̃��d�

ds̃
−

cos �

r̃
�2

+ 1� . �9�

Corresponding to the range s̃= �0, S̃�, the angle ��s̃� spans a

range �0,��S̃��; within this range of �, the reduced free en-
ergy of the original circular tube of radius r0, cocentered at

the same origin, has the value 0
S̃ds̃�d� /ds̃�; taking this free

energy as the reference and using the constraint in Eq. �2�,
we finally arrive at the reduced free-energy difference for the
nonadhering portion of the membrane,

�F̃m = �
0

S̃
ds̃�1

2
�d�

ds̃
−

cos �

r̃
�2

+
1

2
−

cos �

r̃
� , �10�

which needs to be minimized with respect to ��s̃� with the
constraint,

dr̃

ds̃
= sin ��s̃� , �11�

a reduced version of Eq. �1�.
The functional minimization problem can be treated in

comparison with the formalism developed in classical me-
chanics. We introduce an effective Lagrangian
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L =
1

2
��̇ −

cos �

r̃
�2

+
1

2
−

cos �

r̃
+ 	�s̃��ṙ̃ − sin ��s̃�� ,

�12�

where 	�s̃� is a Lagrangian multiplier function to be deter-
mined below, and a dotted symbol represents a derivative
with respect to s̃. Effective canonical momenta can then be
introduced,

P��s̃� 

�L

��̇
= �̇ −

cos �

r̃
, �13�

and

Pr�s̃� 

�L

� ṙ̃
= 	�s̃� . �14�

It turns out that in the current problem P��s̃� has the simple
physical meaning of the membrane curvature at s̃. Using the
effective Lagrangian, we can define an effective Hamil-
tonian,

H = P��̇ + Prṙ̃ − L =
P�

2

2
+

P� cos �

r̃
+

cos �

r̃
−

1

2
+ Pr sin � .

�15�

The use of Hamilton’s equations of motion then leads to four
first-order differential equations to be solved for four func-
tions r̃�s̃� , ��s̃� , Pr�s̃�, and P��s̃�,

d�

ds̃
= P� +

cos �

r̃
, �16�

dr̃

ds̃
= sin � , �17�

dP�

ds̃
= �P� + 1�

sin �

r̃
− Pr cos � , �18�

and

dPr

ds̃
=

�P� + 1�cos �

r̃2 . �19�

Four initial conditions are needed to completely specify
the conditions required for solving the above equation set.
We use

��0� = 0, �20�

which is a condition that the shape curve at s̃=0 has a zero
slope because of the mirror symmetry, and

r̃�0� = 1, �21�

which removes the ambiguity in selecting the origin of the
coordinate system along the dash-dotted line in Fig. 1�b�. We
also use two varying parameters, 
 and �,

P��0� = 
 and Pr�0� = � , �22�

in our calculation. Once 
, �, and S̃ are given, the solution to
the differential equations gives trajectories of the four func-

tions from s̃=0 to s̃= S̃.
Within this treatment, mathematically the function ��s̃� is

not directly involved. The integration to find ��s̃� is straight-
forward and can be conducted after the trajectories have been
calculated, from,

��s̃� = �
0

s̃

dt cos ��t�/r̃�t� . �23�

At s̃= S̃, the membrane curve tangentially connects to the
other portion which is adhered to the surface of the rigid
cylinder. In the next section, we are interested in discussing
the physical properties of the adhesion problem with atten-
tion paid to an adhering cylinder of radius R and wrapping
angle � �see definitions in Fig. 1�b�� as basic physical param-

eters. This further produces two connection conditions at S̃;
one of which is

� = ��S̃� − ��S̃� − � , �24�

and the other is

R/r0 
 R̃ =
r̃�S̃�sin���S̃��

sin �
. �25�

At this stage, on the basis of how these quantities are calcu-
lated, we can take the mathematical perspective that by using


 , � and S̃ as the initial parameters, the functions

R̃ = R̃�
,�; S̃� �26�

and

� = ��
,�; S̃� , �27�

can be calculated together with

�F̃m = �F̃m�
,�; S̃� �28�

yielded from Eq. �10�, after a solution to the differential Eqs.
�16�–�19� is found with initial conditions �20�–�22�.

Considering the more interesting R̃ and � as physical pa-
rameters of the system, we can also take another perspective,

namely, regarding both 
 and � as functions of R̃ and � as

well as S̃. In this view, the above free-energy difference be-

comes a function of R̃ , � and S̃. For fixed R̃ and �, varying

S̃ we can search for the location of the free-energy minimum,

S̃0. This free-energy minimum,

fm�R̃,�� 
 �F̃m�
�R̃,�, S̃0�,��R̃,�, S̃0�; S̃0� , �29�

is then used in Sec. III for analysis of the physical problem.
The numerical procedure designed to handle the transforma-
tion from Eqs. �26�–�28� to Eq. �29� is discussed in Appendix
A; readers who are not interested in numerical techniques
can proceed directly to Sec. III.
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III. RESULTS AND DISCUSSION

In this section, we assume that a short-range potential
energy per unit area, w �negative�, can be attained when the
membrane and cylinder surfaces are in contact. The same
parameter was introduced in related systems recently
�1,2,14,18,19,25,26�. Taking into account the bending and
tension energies, we can write the reduced free-energy dif-
ference for the contact portion of the system,

�F̃contact = w̃�R̃ +
1

2� 1

R̃2
+ 1��R̃ −  , �30�

where the last term is the reduced reference free energy of a
tubular membrane corresponding to the angle  specified in
Fig. 1�b�. In Eq. �30�, we have also introduced a reduced
adhesion energy,

w̃ = wr0
2/� , �31�

important in the following discussion.
Adding the contribution from the nonadhered portion of

the membrane discussed in the last section to Eq. �30�, we
arrive at the total reduced free-energy difference of the sys-
tem,

�F̃�R̃,�,w̃� = fm�R̃,�� + w̃�R̃ +
1

2� 1

R̃2
+ 1��R̃ −  ,

�32�

where fm�R̃ ,�� is the contour-minimized free-energy differ-
ence in Eq. �29�. From the relationship in Eq. �24�, we have

 = − � − ��R̃,�� , �33�

where ��R̃ ,�� is the angle � at the contact point S̃, which,
after the minimization with respect to all possible paths that
the free portion of the membrane can make, as discussed in

the last section, is a function of R̃ and �. In the geometry
shown in Fig. 1�b�, the terminal � has a negative value hence
 can be shown to be positive.

A. Second-order adhesion transition from desorption to weak
wrapping

For fixed R̃, increasing the reduced adhesion energy �w̃�
induces an adhesion transition between a desorption state,
where the rigid cylinder and the membrane have no contact,
to a weak-wrapping state, where the configuration resembles
Fig. 1�a� with a small wrapping angle � and weak membrane
shape distortion. In this section, we show that this phase
transition can be determined analytically without invoking
the numerical analysis in Appendix A. The characteristic
property of this transition is the wrapping angle �.

In Appendix B, we show that in weak adhesion, to linear

order in ��S̃� the contribution of fm�R̃ ,�� to the total energy

is simply −��S̃�. The use of this term and the expression of
, Eq. �33�, in Eq. �32� gives

�F̃�R̃,�,w̃� = �� 1

2R̃2
+

1

2
+ w̃�R̃ + 1�� + O��2� . �34�

Although the coefficient of the �2 term is not explicitly cal-
culated in this work, it must be positive; otherwise, if the
coefficient was negative, the system would undergo a spon-
taneous shape distortion even without the presence of attrac-
tion to the rigid cylinder. Indeed, in Eq. �4� of Ref. �18� and
Eq. �15� of Ref. �26�, we see similar free-energy expansions
of related systems, where the coefficient of the quadratic
wrapping-angle term is positive.

This expansion allows us to identify an “order parameter”
��, in comparison with the standard Ginzburg-Landau free-
energy expansion of a second-order phase transition. As w̃ is
small, the free energy has a minimum at �0=0, representing
no contact between the membrane and the cylinder, hence
the system is in a desorption state. Beyond a critical w̃c, the
first term in Eq. �34� becomes negative at a nonzero, small
�0, indicating an adhesion between membrane and the rigid
cylinder surface. The critical point is determined by the re-
quirement that the coefficient of the � term vanishes, which
can be solved to yield

w̃c = −
1

2�1 +
1

R̃
�2

. �35�

In the phase diagram presented in Fig. 2, the curve associ-
ated with overlaying squares represents this analytic result
for the phase boundary.

An interesting limit of the critical adhesion energy in Eq.
�35� can be considered by taking R�r0,

wc = −
�

2R2 , �36�

which coincides with the critical adhesion energy for the
system of a rigid cylinder adhering to a flat membrane stud-
ied in Ref. �26�. A simple interpretation of this wc is that as
the adhesion transition takes place, the bending energy pen-
alty per unit area occurring in the membrane is compensated
by the adhesion-energy gain per unit area.

Another interesting limit of the critical adhesion energy in
Eq. �35� is for the case of adhesion between a soft tubular
membrane of radius r0 and a flat, rigid surface, when R
�r0,

wc = −
�

2r0
2 . �37�

This can be understood from a balance of energetics in the
system as well; the entire adsorbed area of the membrane to
the flat surface is flat hence the free-energy loss per unit area,
in reference to that of a tubular membrane of radius r0, is
� /2r0

2. An adhesion transition takes place as the adhesion-
energy gain compensates this loss. The above critical adsorp-
tion, Eq. �37�, agrees with that determined in �2�. At the
onset of the transition, the membrane shape remains almost a
perfect circle where the area inside is not changed; the sys-
tems considered here and in �2� hence have the same char-
acteristics.
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Although we have derived the second-order transition
boundary analytically using a small-angle expansion, we can
also determine this phase transition independently on the ba-
sis of analyzing numerical results described in Appendix A.

The function fm�R̃ ,�� can be computed numerically and

listed in a lookup table. For every set of fixed R̃ and w̃, we

numerically search for the minimum of �F̃�R̃ ,� , w̃� as a
function of �. At small values of w̃, the only free-energy
minimum has a value of zero and corresponds to �0=0; the

system is in a desorption state. The set R̃ and w̃c represents a

critical point, once the searched minimum of �F̃�R̃ ,�0 , w̃�
becomes weakly negative. In this way, critical points can be
determined numerically and are represented in Fig. 2 by
�green� squares. The agreement with the analytic result is
excellent.

B. First-order wrapping transition from weak to deep
wrapping

At a fixed R̃, beyond a second-order adhesion transition
w̃c, more distortion of the membrane cross section can be

seen but the entire conformation remains approximately cir-
cular. Characteristically, the weakness of the distortion is re-
flected in the smallness of the wrapping angle �0 �corre-
sponding to the free-energy minimum�, typically much
smaller than � /2. As �w̃� reaches another transition point, w̃w,
a first-order transition from the weak-wrapping state to the
deep-wrapping state takes place. In the deep-wrapping con-
formation, a major portion of the cylinder is in contact with
the membrane. There is no analytic solution for determina-
tion of this phase boundary. The phase boundary was nu-
merically determined and is represented in Fig. 2 by circles,
where a solid line has also been drawn over the circles as
guidance for eyes. For a number of different radius ratios
R /r0, in Fig. 3 we illustrate the conformation of the system at
the transition boundary.

The numerical procedure used to determine this phase
transition relies on the analysis of the lookup table for the

function fm�R̃ ,��. Using this table we search for the mini-

mum of �F̃�R̃ ,� , w̃� as a function of � for given values of R̃
by gradually increasing �w̃�. Near the wrapping transition w̃w,
two minima are typically seen: one corresponding to a
shallow-wrapping state and the other deep-wrapping. At the
transition w̃w, the two minima have an equal value. A typical

�F̃�R̃ ,� , w̃w� for R̃=4 as a function of � is shown in Fig.
4�a�, where a free-energy barrier having a barrier height �
can be seen between two free-energy minima having a well

depth �. For various values of R̃, in Fig. 4�b� � and � are
shown in reduced units by open and filled circles, respec-
tively. As an indication of the magnitude, according to Eqs.
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|

desorption
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deep-wrapping adhesion

deep-wrapping adhesion

shallow-wrapping
adhesion

(a)

(b)

~
~

FIG. 2. �Color online� Phase diagram for the adhesion of a cyl-
inder of radius R to an originally cylindrical membrane of radius r0,
in a parameter space spanned by the reduced adhesion energy
�w�r0

2 /� and radius ratio R /r0. Two separate plots, �a� and �b�, are
shown for different regions of the phase diagram. The curve asso-
ciated with square symbols is a second-order phase boundary be-
tween the desorbed and weak-adhesion states where the tubular
membrane shows a weak shape distortion, determined from a
Ginzburg-Landau free-energy expansion. Circles represent our nu-
merical results for the first-order phase boundary between the weak-
adhesion and strong-adhesion states where the membrane deeply
wraps the rigid cylinder.

R/r0 = 0.05 R/r0 = 0.3 R/r0 = 1.025 R/r0 = 1.35

R/r0=1.70 R/r0 = 1.75 R/r0 = 3 R/r0 = 12

(b)(a) (c) (d)

(f)(e) (g) (h)

FIG. 3. �Color online� Cross-section profiles of the tubular
membrane �blue� at the first-order phase transition from deep wrap-
ping �upper panels� to shallow wrapping �lower panels� around the
rigid cylinder �red�. The shapes were plotted according to numerical
results obtained in this work for various radius ratios R /r0, where R
is the radius of the rigid cylinder and r0=�� / �2�� the radius of the
soft membrane tube before adhesion takes place.
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�4�–�8�, a free membrane tube has a reduced free energy per
unit length in the magnitude of F0r0 / �2�L�=�.

A careful examination of free-energy curves for various

values of R̃ reveals a number of interesting properties of the
deep-wrapping state, after the wrapping transition. Typical

conformations of the system for R̃=0 to R̃�1.1 are illus-
trated in the first three plots of Fig. 3, where the wrapping
membrane touches itself from the left to right sides on the
top of the wrapped cylinder. The free-energy plots as func-
tions of � have slightly different features from the example
given in Fig. 4�a�; the sharp bending of the curve indicated
by the down-pointing arrow, for example, does not exist. The
free-energy curve first displays a minimum at a small �
where a shallow-wrapping state is stabilized, ascents to reach
a free-energy barrier and then descents to a second free-

energy minimum. Within this range of R̃, the location of the
second minimum, where the deep-wrapping state resides at
the wrapping transition, is determined by the limit in � at
which the two wings of the membrane start to touch each
other on the top of the wrapped cylinder. This limit, at a
rather large value of �, is noted in Fig. 4�a� by a upper-
pointing arrow, interrupts the smooth variation in the free-
energy curve. The adsorption height, defined as the distance
from the bottom of the cylinder to the bottom of the mem-
brane curve, H, the wrapping angle �0, and the membrane

path length of the nonadhered portion S0, are shown by
circles in Fig. 5 and can be seen to vary smoothly in the

specified region of R̃. For comparison, these physical prop-
erties for the coexisting shallow-wrapping conformations at
the first-order wrapping transition w̃w, are shown in Fig. 5 by

squares. Approximately at R̃�1.1, the adsorption height H
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FIG. 4. �Color online� Characteristics of the reduced free-energy
difference at the first-order transition. Shown in plot �a� is the re-
duced free-energy difference �Eq. �34�� as a function of the wrap-
ping angle � at the first-order transition between shallow and deep
wrappings for R /r0=4. The well depth � and barrier height � are
defined and two arrows specify other features discussed in the text.
Filled and open symbols in �b� represent � and � for the range of
R /r0 considered in this work.
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FIG. 5. �Color online� Distance from the bottom of the adhered
cylinder to the bottom of the adhering membrane H, wrapping angle
�0, and half membrane size S0, as functions of the radius ratio R /r0

for deep-wrapping and shallow-wrapping states �circles and
squares, respectively� at the wrapping transition w̃w. In plot �b�, we
have also indicated the limit of the wrapping angle �0=� /2 for the
deep-wrapping state by a dash-dotted line, valid for R /r0→0.

JEFF Z. Y. CHEN AND SERGEY MKRTCHYAN PHYSICAL REVIEW E 81, 041906 �2010�

041906-6



reaches zero as the bottom of the membrane portion adhered
to the cylinder touches the bottom of the nonadhered mem-
brane.

The deep-wrapping conformation for R̃ in the range of

R̃�1.1 to R̃�1.7 has somewhat different characteristics.
The calculation of the shape of the nonadhered membrane
portion was performed under yet another additional con-
straint so that the shape curve does not cut into the red circle
in Fig. 3, i.e., this portion of the membrane is required to be
excluded from the interior of the rigid cylinder. The direct
result of invoking this constraint is the occurrence of a cusp
in the free-energy curve, indicated in Fig. 4�a� by a down-
pointing arrow, dividing the region into two: smaller � where
the shape curve is not subject to this additional constraint
and larger � subject to the constraint. As a consequence,

from R̃�1.1 to R̃�1.7, the adsorption height H characteris-
tically rises from zero to a finite value again, first slowly and
then more drastically; a signature of this range can also be

detected in the S0 curve as a function of R̃; these can be
viewed in the insets of Fig. 5.

For systems in the range of R̃�1.7 to 12, the free-energy
curve is characteristically very similar to the plot in Fig. 4�a�,
where the second minimum �corresponding to the deep-
wrapping conformation at the wrapping transition� shows up
before the limit where two wings of the wrapping membrane
touch each other. The last three illustrations in Fig. 3 repre-
sent this type of conformations. In particular, one can see
that the wrapping angle �0 of the deep-wrapping state starts

to retreat from a maximal value �Fig. 5�b�� in this range of R̃.
The two wrapping wings on the top of the rigid cylinder are
now no longer in contact.

C. Contact curvature in the weak-wrapping state

In this work, we assume that the membrane shape curve
connects with the cylinder surface tangentially through a
zero contact angle. It is interesting to examine the �nonzero�
curvature at the contact point �the “contact curvature”� and
relate that with other parameters in the system. Seifert �2�
showed that the difference between the curvature of the

membrane at the contact point, r0P��S̃� in our notation, and
the curvature of the substrate, 1 /R in our notation, is related
to the adhesion-energy w̃, through a simple relationship,

�P��S̃� − 1/R̃�2�contact point� = 2�w̃� , �38�

where we have written all quantities in reduced units. Note

that the right-hand side does not depend on R̃ hence the

relationship is common for all R̃, because of the local nature
of the contact point.

This is a remarkable relation which can be tested by our
numerical results. In Fig. 6 we plot the left-hand side of the
above expression, calculated by using numerical data of

P��S̃� from the minimization problem in this work, as a func-
tion of w̃ in the range where the weak-wrapping state is

stable, for various values of R̃. As we can see from the figure,
our numerical solution completely agrees with the expected

theoretical result in Eq. �38�, shown by a straight line. For

any given R̃, there is a limited region in w̃ where the weak-
wrapping state is stable; this region can be visually small in
a logarithmic scale, reflected in the figure by densely over-
lapping symbols.

Note that Eq. �38� is the result of minimization of the
system energy Eq. �32� with respect to �, not a boundary
condition for the contact curvature to start with �2�. Within
similar mathematical steps to those in the Appendix of Ref.
�18� we can analytically show that Eq. �38� is the result of
minimizing the free energy in Eq. �32�. In this paper, we do
not repeat this analytical derivation, rather demonstrate the
concept by using numerical data in Fig. 6.

IV. SUMMARY

We have investigated phases that can form when a long
rigid cylinder of radius R interacts with a membrane tube of
radius r0, where the axes of the two are in parallel, through
an excluded-volume interaction and a short-ranged attraction
represented by a potential energy per unit area w. We have
used the Helfrich energy to characterize the free energy of
the membrane, which possesses a bending energy �. As
shown in Secs. II and III, of the three parameters, only two
combinations, R /r0 and wr0

2 /�, are relevant in the model.
We have developed a numerical procedure that allows us

to calculate the free energy of the system in a large range of
R /r0. The analysis of the free energy leads to the conclusion
that two phase transitions exist in this simple system. In an
adhesion transition, the rigid cylinder makes a contact with
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FIG. 6. �Color online� Numerical results for the square of the
difference between the curvature of free membrane portion and the
curvature of the wrapped cylinder at the contact point s=S as a

function of w̃, for various values of R̃. Presented in open symbols,
circles, squares, diamonds, up triangles, left triangles, down tri-

angles and right triangles correspond to R̃=0.02, 0.04, 0.06, 0.08,
0.1, 0.2, and 0.3, respectively. Presented in symbols filled with red
color, circles, squares, diamonds, up triangles, left triangles, down

triangles, and right triangles correspond to R̃=0.4, 0.5, 0.6, 0.7, 0.8,
0.9, and 1.2, respectively. Presented in symbols filled with light
gray color, circles, squares, diamonds, up triangles, and left tri-

angles correspond to R̃=1.7, 2, 3, 5, and 10, respectively. Overlay-
ing is a straight line representing the theoretical result, Eq. �38�,
from Ref. �2�.
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the membrane tube where the cross-section shape remains
almost circular; both analytical and numerical analyses sup-
port that the adhesion transition is second order. In a wrap-
ping transition at a larger wr0

2 /�, the membrane shape makes
an abrupt change from shallow wrapping to deep wrapping
about the cylinder; our numerical analysis of the free energy
and a number of other physical properties identifies this as a
first-order phase transition.

The physical properties of free-energy curves and confor-
mations of deep-wrapping states show different characteris-
tics in three ranges of R /r0 identified in Sec. III at the first-
order wrapping transition. We used the wrapping angle �0,
the reduced adsorption height H /r0, and the reduced mem-
brane size of the nonadhered portion S0 /r0 to further describe
the conformational behavior in these three ranges of R /r0.

The radius of the membrane tube, r0, is related to the
surface tension of the tubular membrane � by r0

2=� /2�. In
view of the fact that r0 can be adjusted through the tension �,
a possible experimental test of the phase transitions predicted
from this study can be done by varying �. For fixed R and w,
this corresponds to a special trajectory in the phase diagram
described in Sec. III where R /r0 and wr0

2 /� are used as pa-
rameters.

It would be interesting to include a constant enclosed area
constraint in our model, which can be used to describe a
two-dimensional version of a spherical particle interacting

with a vesicle. Pushing to the limit R̃�1, such a study would
recover the problem of adhesion of a two-dimensional
vesicle to a flat substrate, previously studied by Seifert �2�.
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APPENDIX A: NUMERICAL APPROACH IN MEMBRANE
SHAPE CALCULATION

Most analysis in this paper depends on the integration of
Eqs. �16�–�19�, which can be performed by using the Runge-
Kutta algorithm. The integration step length was taken to be

�S̃ = 0.0001 �A1�

in integrating the numerical system.
There are three parameters in the integration system, 
 , �

and S̃. Two of them are related to R̃ and � by constraints in

Eqs. �26� and �27�. For each integration range S̃, we used a

shooting method to numerically solve Eqs. �16�–�19� using R̃
and � as a target. That is, an algorithm was designed to vary
both 
 and � such that the solution to Eqs. �16�–�19� will

match prespecified values of R̃ and � according to Eqs. �26�
and �27� at s̃= S̃. This method has proven to be useful and

was implemented in the calculation of the membrane shape
�18�. In this work we found that Newton’s method for root
finding of two-variable equations is convenient for carrying

out the shooting procedure. Note that not all S̃ yield valid

prespecified shooting target R̃ and �. Also implemented in
this part of the numerical procedure are two additional con-
straints so that �I� in deep wrapping the two wings of the
membrane do not overlap with each other on top of the
wrapped cylinder �see Fig. 3� and �II� the shape curve never
cuts into the circular shape representing the rigid cylinder.

The reduced free-energy difference �F̃m, Eq. �28�, can

then be regarded as a function of R̃, �, and S̃, determined by

the above numerical procedure. The minimization of �F̃m

with respect to S̃ is then considered. Depending on values of

R̃ and �, in most parameter region, the minimization can be

effectively carried out by numerically solving d��F̃m� /dS̃

=0 to yield the location S̃0 for the free-energy minimum.
However, in some parameter regions, the imposition of con-

straints �I� and �II� spoils the continuity of d��F̃m� /dS̃=0 in
such a way that a numerical derivative cannot be reliably
produced; in this case, the free-energy minimum was found

by directly searching the S̃ space.
Implementing these numerical procedures, we can calcu-

late the function fm�R̃ ,�� in Eq. �29�, which is represented in

a look-up table with values of R̃ shown in Fig. 4�b� and �
varying in a small increment,

�� = 0.00005. �A2�

This table also contains all other physical properties needed
for the solution of the problem and is used for data analysis
in Sec. III. The numerical errors yielded from this calculation
are smaller than the size of symbols we used to plot the
results in figures.

As a final note, our computational implementation of the

shooting method becomes unstable for R̃�12 in the deep-
wrapping region, even in double precisions; the target be-
comes too sensitive to the initial selection of 
 and �. We
have not yet found another stable numerical method to per-

form the calculation of the phase diagram going beyond R̃
�12.

APPENDIX B: SMALL WRAPPING-ANGLE EXPANSION
OF THE FREE-ENERGY DIFFERENCE IN (9)

In Sec. III A, we used a small wrapping-angle expansion
of the free energy in Eq. �9�, when the cross section of the
free portion of the membrane undergoes a small distortion
from a perfect circular shape. The derivation is considered in
more details here. For the free portion of the membrane, we
rewrite Eq. �9� as

�F̃m = �
0

S̃
ds̃�1

2
�d�

ds̃
�2

−
d�

ds̃

cos �

r̃
+

1

2
� cos �

r̃
− 1�2� .

�B1�
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Corresponding to a circular shape, the zeroth order of a
weakly deformed membrane shape, �0=0 and r̃0=1. To the
zeroth order, �F̃m�0. When the membrane profile makes
weak distortions, keeping a term of linear order in � and
dropping all higher-order terms, we have

�F̃m � �
0

S̃
ds̃�−

d�

ds̃
� = ��0� − ��S̃� = − ��S̃� , �B2�

where we used the initial condition �20� in the last step.
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